
“pp04˙revised˙copy”
2006/6/26
page 1i

i
i

i

i
i

i
i

Chapter 1

Parallel Sparse Solvers,
Preconditioners, and
Their Applications

1.1 Introduction
Systems of linear equations arise at the heart of many scientific and engineering
applications. Their solutions often dominate the execution times. The coefficient
matrices of these linear systems are often sparse; that is, most of the matrix entries
are zeros. For realistic modeling and simulations, the linear systems are very large;
some have millions of unknowns. As technology advances, there is a greater demand
for extremely high-fidelity simulations. Consequently the systems are becoming
even larger than before. To solve them, it is essential to exploit sparsity. Moreover,
parallel computing is an essential tool to reduce the solution times and, in some
cases, may offer the only possibility of solving the systems. There are two main
classes of methods for solving sparse linear systems: direct methods and iterative
methods. As we will see later, hybrid methods that combine direct and iterative
schemes are gaining popularity.

This chapter will sample some of the most recent work on the parallel solution
of large sparse linear systems. Section 1.2 deals with issues in parallel sparse direct
methods and Section 1.3 discusses advances in iterative methods and precondition-
ing techniques. Hybrid methods that combine techniques in sparse direct methods
and iterative schemes are considered in Section 1.4. Section 1.5 surveys recent ac-
tivities on expert systems on sparse matrix computation. Finally, we conclude in
Section 1.6 with some applications of sparse matrix computations.

1.2 Sparse Direct Methods
Direct methods, based on triangular factorizations, have provided the most robust
and reliable means for solving sparse systems of linear equations Ax = b. The solu-
tions are obtained after a finite number of operations. Fill is generally introduced
into the factors during the factorization. That is, some entries that correspond
to zeros in A become nonzero. Managing fill during factorization is probably as
important as designing efficient algorithms for performing the factorization. The

1



“pp04˙revised˙copy”
2006/6/26
page 2i

i
i

i

i
i

i
i

2 Chapter 1. Parallel Sparse Solvers, Preconditioners, and Their Applications

solution process generally consists of three phases: analysis, factorization, and tri-
angular solution. A good introduction to sparse matrix factorization can be found
in [22, 30]. During the analysis phase, the matrix is analyzed to determine a (ten-
tative) pivot sequence and perhaps set up the appropriate data structures required
for the numerical factorization. This may involve permuting (or ordering) the rows
and/or columns of the matrix, as well as constructing tools (such as elimination
trees [49, 63] and assembly trees [25]) for efficient numerical factorization. Depend-
ing on the characteristics of the matrix, the analysis can be entirely symbolic (e.g.,
for symmetric positive definite matrices) or can rely on both symbolic and numeric
information (e.g., for general unsymmetric matrices). During the numerical fac-
torization, the information from the analysis is used in computing the factors L
and U , where L is lower triangular and U is upper triangular. Modifications to
the pivot sequence may be needed to maintain numerical stability. The final phase
uses the triangular factors to compute the solution to the linear systems. Iterative
refinement may be used to improve accuracy.

Permuting the rows and columns during the analysis phase is combinatorial in
nature. It often involves graph algorithms, which is the subject of Chapter ??. The
numerical factorization is often the most time consuming step. Consequently, it was
the first task that was tackled when parallel computing became available. There is a
lot of structure in the triangular factorization. In particular, it is often the case that
some consecutive rows and columns of the triangular factors have similar sparsity
structures1 (this can happen because of fill and in finite-element applications, for
example, where there is more than one variable at each node). Such a group of rows
or columns is often referred to as a supernode [6, 47]. The use of supernodes allows
dense matrix kernels to be exploited. State-of-the art sparse direct solvers use Level
3 BLAS [18] and LAPACK [4] routines as much as possible. Once a triangular fac-
torization has been computed, the third phase is relatively straightforward. In a
parallel setting, triangular solutions are communication bound; the amount of com-
munication is high compared to the number of floating-point operations required,
particularly when solving for a single (or small number of) right-hand sides. As the
performance of parallel numerical factorization algorithms improves, parallel sparse
triangular solutions can become the bottleneck, particularly when a sequence of
right-hand sides has to be solved.

1.2.1 Parallel Sparse Matrix Factorizations

While there has been significant progress in the improvement of the performance
of parallel sparse matrix factorizations over the years, sparse direct methods have
been less popular for large-scale applications than iterative methods. One reason is
the large storage requirement of the numerical factorization phase. Another is the
amount of communication required by parallel factorizations. The communication
overhead depends, to a large extent, on how the work is partitioned and assigned
to the processors.

Li, Grigori, and Wang [35, 44] have recently carried out a careful study of

1Sparsity structure of a matrix refers to the locations of the nonzero elements in the matrix.



“pp04˙revised˙copy”
2006/6/26
page 3i

i
i

i

i
i

i
i

1.2. Sparse Direct Methods 3

the numerical factorization phase of SuperLU DIST [43], a state-of-the-art direct
solver for sparse unsymmetric systems. The L and U factors are represented in Su-
perLU DIST as 2D block matrices, and are distributed in a 2D block-cyclic fashion
on a 2D process grid. By examining the sparsity structure of L and U , and the
communication pattern of the algorithm, Li et al. have derived a theoretical bound
on the parallel efficiency of the algorithm. They have demonstrated that this bound
can be used to predict the performance for any sparse matrix, when the sparseness is
measured with respect to the underlying machine parameters, such as floating-point
speed, network latency, and bandwidth. The theoretical efficiency bound may be
used to determine the most critical hardware parameters that need to be improved
to enhance performance for the class of problems under consideration.

Li et al. have analyzed the efficiency of SuperLU DIST using increasing num-
bers of processors with increasing problem sizes. They conclude that for matri-
ces satisfying a certain relation between their size and their memory requirements
(namely workload F proportional to nnz(L + U)3/2),2 the factorization algorithm
is scalable with respect to memory use. This relation is satisfied by matrices arising
from 3D model problems. For these problems, the efficiency is essentially constant
when the number of processors increases while the memory requirement per proces-
sor is constant. However, for 2D model problems, the algorithm does not scale with
respect to memory use. Li et al. have validated their results on an IBM Power3
parallel machine at the National Energy Research Scientific Computing (NERSC)
Center. It appears that load imbalance and an insufficient work relative to the
communication overhead are the main sources of inefficiency on a large number of
processors.

In a separate study, Guermouche and L’Excellent [36] have considered memory
requirements in a parallel implementation of a multifrontal algorithm [25]. They
distinguish between storage for the factors (referred to as static) and that for the
frontal matrices and the contribution blocks (referred to as dynamic). The static
storage grows as the factorization proceeds, while the size of the dynamic storage
varies depending on the structure of the assembly tree. In the factorization of a
frontal matrix, processors are selected based on their current memory usage. In ad-
dition, Guermouche and L’Excellent have taken memory usage into consideration
when parallel tasks are scheduled. They have demonstrated that overall memory
requirements can be improved using a combination of task distribution and man-
agement strategies, without greatly degrading the factorization times.

Another factor that affects the performance of sparse matrix factorization is
data mapping. It is well known that parallelism can be identified using a tree struc-
ture (e.g., an elimination tree for Cholesky factorization [49, 63] and an assembly
tree for multifrontal methods [25]). The proportional heuristic [55, 56], which is a
generalization of the subtree-to-subcube mapping [32], has typically been used to
map the data and computation to processors. However, for sparse systems from
finite-element methods on complex domains, the resulting assignments can exhibit
significant load imbalances. Malkowski and Raghavan [50] have developed a multi-
pass mapping scheme to reduce such load imbalances. The multi-pass mapping

2nnz(M) denotes the number of nonzeros in the matrix M .



“pp04˙revised˙copy”
2006/6/26
page 4i

i
i

i

i
i

i
i

4 Chapter 1. Parallel Sparse Solvers, Preconditioners, and Their Applications

scheme combines the proportional heuristic with refinement steps to adjust the
loads on the processors. For a test suite of large sparse matrices, they have demon-
strated that the new mapping scheme is indeed effective in producing assignments
that substantially improve the load balance among processors.

1.2.2 Ordering to Increase Parallelism

It is well known that for sparse direct methods, the sparsity structure of the trian-
gular factors depends drastically on the ordering of rows and columns [22, 30]. A
lot of work has been done in developing fill-reducing orderings. Examples of fill-
reducing ordering algorithms include Markowitz scheme [51], the minimum degree
algorithm [31, 58], and the nested dissection algorithm [29, 46].

It is generally believed that the sparser the triangular factors, the more inde-
pendent the columns/rows, and hence the higher the degree of parallelism that is
available. However, one can look at the ordering problem differently.

Duff and Scott [26] have considered using graph partitioning techniques to
permute a unsymmetric matrix A into a singly bordered block diagonal form:

A→


A1 B1

A2 B2

. . .
...

Aq Bq

 ,

where the diagonal blocks Ai, 1 ≤ i ≤ q, need not be square. A sparse direct solver
can be applied to the diagonal blocks Ai independently and in parallel. Since Ai is
in general rectangular, its factorization leads to a lower trapezoidal factor and an
upper triangular factor:

Ai =
[

Li

L̃i

]
Ui,

where Li is square and lower triangular. By putting L̃iUi, 1 ≤ i ≤ q, together, one
obtains the following partitioning of A:

A→



L1U1 C1

L2U2 C2

. . .
...

LqUq Cq

L̃1U1 D1

L̃2U2 D2

. . .
...

L̃qUq Dq


.

Here, each Bi, 1 ≤ i ≤ q, has been partitioned according to the row dimensions of
Li and L̃i. That is,

Bi =
[

Ci

Di

]
.



“pp04˙revised˙copy”
2006/6/26
page 5i

i
i

i

i
i

i
i

1.3. Iterative Methods and Preconditioning Techniques 5

This is termed a stabilized doubly bordered block diagonal form. The border is larger
than that for a doubly bordered form obtained directly using a graph partitioning
algorithm but the key advantage is that pivots are chosen stably from the diagonal
blocks. For efficiency, it is desirable for Bi to have as few columns as possible and
to be of a similar size. This is a combinatorial problem. Duff and Scott [26] have
developed a number of coarse-grained parallel direct solvers based on preordering A
to bordered form. These are available in the HSL mathematical software library [24].

1.2.3 Out-of-core Methods

One of the primary reasons why sparse direct methods may not be popular among
extremely large-scale applications is the amount of storage required for the fill in
the triangular factors. A number of codes are available that aim to alleviate the
storage bottleneck by incorporating out-of-core techniques [21, 48]. These involve
writing part of the matrix factors that have been computed but no longer needed
during the factorization to secondary storage (e.g., disks). Only a small portion
of the matrix factors is kept in the main memory. As a result, the main memory
requirement can be much reduced. Almost all out-of-core implementations have
been based on frontal and multifrontal methods [25, 40]. Oblio, an object-oriented
library for solving sparse linear systems of equations by direct methods designed
and developed by Dobrian and Pothen [17], is designed to handle memory accesses
at two levels: in-core and out-of-core. At the in-core level the supernodal nature
of the computation provides support for Level 3 dense linear algebra kernels. Most
of the time these kernels translate directly into BLAS/LAPACK [4, 18] calls but
there are few cases that need to be customized using recursion or blocking. At the
out-of-core level, Oblio can store the matrix factors on disk.

1.3 Iterative Methods and Preconditioning
Techniques

An iterative method for solving a linear system is based on the generation of a
sequence of approximations to the solution. Whether the sequence will converge to
the solution depends a great deal on the matrix, the starting guess, and the choice of
iterative method. There are many iterative schemes available. Conjugate gradient
(CG), minimal residual (MINRES), generalized minimal residual (GMRES), bicon-
jugate gradient (BCG), conjugate gradient squared (CGS), biconjugate gradient
stabilized (BiCGSTAB), quasi-minimal residual (QMR), and Chebyshev iteration
are some of the most popular schemes [59, 67].

Iterative methods are very popular in large-scale applications because their
storage requirements are not as severe as those in sparse direct methods. In most
cases, just the original matrix and a few vectors need be stored; there is no fill to
worry about. Moreover, the kernels are mostly inner products and sparse matrix-
vector multiplications, which are easier to implement and parallelize than sparse
direct methods. However, there are few operations to perform so that the efficiency



“pp04˙revised˙copy”
2006/6/26
page 6i

i
i

i

i
i

i
i

6 Chapter 1. Parallel Sparse Solvers, Preconditioners, and Their Applications

of parallel iterative methods tends to be poor.
The spectral properties of the iteration matrix play a very important role in

the rate of convergence. One can change the spectral properties by preconditioning
the linear system. More specifically, instead of solving Ax = b, one can solve

PAQQ−1x = Pb,

where P and Q are referred to as the left and right preconditioners, respectively.
Constructing good preconditioners has been the subject of much research during the
last decade. There are many possibilities. Well-known ones include Jacobi, SSOR,
incomplete factorization, approximate inverses, and multilevel preconditioning [59,
67]. The incorporation of the preconditioning step complicates the implementation
somewhat, but can potentially significantly improve the convergence rate and may
be the only way that convergence can be achieved.

1.3.1 Improving the Performance of Iterative Solvers

Matrix-vector multiplication is an important part of many iterative solvers. Its im-
plementation can drastically affect the performance of an entire iterative solver. For
sparse problems, this kernel has very little data reuse and a high ratio of memory
operations to floating-point operations. Recently, Kaushik and Gropp [41] have an-
alyzed the performance based on memory bandwidth, instruction issue rate, and the
fraction of floating-point workload. Performance bounds based on these parameters
provide a good estimate of achievable performance. To get better performance,
they recommend multiplying the sparse matrix by more than one vector whenever
possible. They compare the actual performance of this kernel with the derived per-
formance bounds on scalar processors and a vector processor (a Cray X1). They
observe that the performance is memory bandwidth limited on most scalar and vec-
tor processors. Even though memory bandwidth is huge on vector processors (as
compared to most scalar machines), sparse matrix-vector multiplication is still mem-
ory bandwidth limited: they report that only 23% of the machine peak is possible
under ideal situations for the Cray X1’s. Similar work can be found in [39, 66, 68].

The work of Baker, Dennis, and Jessup [7] supports the finding of Kaushik
and Gropp. Their work attempts to optimize the performance of iterative methods,
and is based on a variant of the GMRES algorithm, in which the standard Krylov
subspace is augmented with approximations to the errors from previous restart cy-
cles. They have focused on a block implementation of this variant of GMRES that
uses a “multivector” data structure. The use of this data structure allows groups
of vectors to be interlaced together in memory. They have examined the memory
characteristics of the block variant of GMRES, and have found that the use of a
multivector data structure reduces data movement versus a non-interlaced or con-
ventional approach. The advantage of the multivector data structure is not limited
to the matrix-vector multiplication, but reduces data movement for all components
of the iterative solver. They have demonstrated using numerical experiments that
reductions in data movement do lead to reductions in execution time



“pp04˙revised˙copy”
2006/6/26
page 7i

i
i

i

i
i

i
i

1.3. Iterative Methods and Preconditioning Techniques 7

1.3.2 Preconditioning Techniques

As already noted, preconditioning is crucial for the convergence of iterative methods.
Much of the research into iterative methods in recent years has focused on the de-
velopment of efficient and robust preconditioning techniques. Hénon and Saad [60]
have proposed computing parallel incomplete LU factorizations in a hierarchical
way. An incomplete factorization is basically an approximate factorization of the
matrix, in which some of the fill entries in the exact factorization are discarded
according to some prescribed criteria [52]. The Parallel Hierarchical Interface De-
composition ALgorithm (PHIDAL), proposed by Hénon and Saad, exploits Schur
complements based on independent sets of “interfaces”. The idea is reminiscent of
the so-called “wirebasket” techniques of domain decomposition [64]. It can also be
considered as a variation and an extension of the parallel Algebraic Recursive Mul-
tilevel Solver (pARMS) of [45]. As the name implies, interfaces (or separators) are
constructed in a hierarchical manner. Once the hierarchical interface decomposition
is defined, the Gaussian elimination process proceeds by levels: nodes in the first
level are eliminated first, followed by those in the second, and so on. Drop toler-
ance strategies are defined so as to limit fill. More specifically, any nonzero entries
that are smaller than a prescribed drop tolerance will be discarded. Hénon and
Saad have reported that for system arising from the solution of Poisson equations
the iteration and factorization times scale well using up to 256 processors, and are
excellent for a more general unstructured problem.

1.3.3 Ordering for Incomplete Factorization

One of the most popular approaches to obtain a preconditioner is to use an in-
complete factorization of the original coefficient matrix. As in direct methods, the
ordering of the rows and columns can affect the number of fill entries that come
up in an incomplete factorization. Since some of these fill entries are discarded,
different row/column orderings will generally result in incomplete factors that can
behave quite differently as preconditioners.

The most common way to order the rows and columns in an incomplete fac-
torization is to preorder the coefficient matrix using ordering algorithms that have
been designed to reduce fill in sparse direct methods (such as the Cuthill-McKee
algorithm [13], the minimum degree algorithm [31, 58], and the nested dissection
algorithm [29, 46]). Then incomplete factorization is applied to the preordered
matrix.

In [53], Munksgaard ordered the rows and columns of a symmetric matrix while
he was computing the incomplete factorization. The ordering was based on the min-
imum degree heuristic. In [15, 16], D’Azevedo, Forsyth, and Tang investigated the
use of greedy heuristics (such as minimum degree and minimum deficiency [65]) to
order the rows and columns while computing the incomplete factorization. However,
numerical information (such as the norm of the discarded fill) was incorporated into
the metrics used to select the pivot row and pivot column at each step. While the
quality of the resulting incomplete factors (as preconditioners) was quite good, the
orderings were quite expensive to compute.



“pp04˙revised˙copy”
2006/6/26
page 8i

i
i

i

i
i

i
i

8 Chapter 1. Parallel Sparse Solvers, Preconditioners, and Their Applications

Recently, Lee, Raghavan, and Ng [42] have considered an approach similar
to Munksgaard’s for computing incomplete Cholesky factorization. That is, the
minimum degree algorithm and the numerical computation interleave throughout
the factorization process. The minimum degree metric is applied to the sparsity
pattern of the matrix resulted from incomplete Cholesky factorization. Lee et al.
refer to this as the interleaved minimum degree strategy. However, more sophisti-
cated techniques are used to modify the diagonal when the matrix loses positive
definiteness. Preliminary results have showed that, as preconditioners the conju-
gate gradient iterations, the incomplete factors produced by the new schemes often
exhibit improved convergent properties.

1.4 Hybrid Direct/Iterative Techniques
A relatively new but promising area of research in the solution of sparse linear sys-
tems is to combine techniques developed for sparse direct methods and iterative
methods. Most of the investigations so far have been focused on the exploitation
of techniques developed for sparse direct methods in computing incomplete factor-
izations. In particular, Ng and Raghavan [54, 57] have considered the use of dense
matrix kernels in incomplete Cholesky factorization. More specifically, additional
constraints are imposed so that dense submatrices are created in the incomplete
Cholesky factors. Also, as was mentioned in Section 1.3.3, ordering techniques
for sparse direct methods are often used in the context of computing incomplete
factorization, which is then employed as preconditioners.

1.4.1 Applying Direct and Iterative Strategies to Partitioned
Matrices

The singly bordered block diagonal form introduced in Section 1.2.2 provides a
different approach to the problem. Duff et al. [23] have proposed combining direct
and iterative methods to solve these large sparse unsymmetric equations. As in
Section 1.2.2, a direct method is used to partially factorize local rectangular systems.
Since the Schur complement matrix is generally quite dense, it can be advantageous
to apply an iterative method to solve the subsystem instead of using direct methods.

Another possibility currently being examined is extracting a block diagonal
matrix from the bordered form

L1U1

L2U2

. . .
LqUq

D1

D2

...
Dq


,



“pp04˙revised˙copy”
2006/6/26
page 9i

i
i

i

i
i

i
i

1.4. Hybrid Direct/Iterative Techniques 9

and using it as a preconditioner for an iterative scheme on the whole linear sys-
tem. The advantage is that the matrix DT =

[
DT

1 DT
2 . . . DT

q

]
should be

sparser than the Schur complement matrix. However, D can be singular, so some
modifications may be needed in order to obtain a stable factorization of D.

1.4.2 Mixing Direct and Iterative Methods

Non-overlapping domain decomposition is a classical approach to solving large-scale
PDE problems on parallel distributed computers. This technique often leads to a
reduced linear system defined on the interface between the subdomains. Giraud,
Mulligan, and Rioual [34] have recently considered iterative as well as direct solution
techniques that exploit features of the MUMPS package [3]. Their block precondi-
tioner consists of assembling the local Schur complement matrices associated with
each subdomain and can be viewed as an additive Schwarz preconditioner. Efficient
implementation relies on the capability of MUMPS to compute for each subdomain
the local Schur complement matrix as well as the factorization of the local Dirichlet
problem. The local Schur complement matrices are factorized by a final parallel
application of MUMPS. This step uses the ability of MUMPS to process matrices
given in a distributed format. Giraud et al. also consider the solution of the original
linear system defined on the complete domain (i.e. not only its restriction to the
interface between the subdomains), again using a parallel application of MUMPS
and its ability to handle distributed input matrices.

These approaches have been integrated into a mixed finite-element code for
the simulation of semiconductor devices in 2D where the nonlinear equations are
solved using a Newton-Raphson scheme. Experiments have been performed on up to
32 processors for the simulation of a mosfet device. Results show that the iterative
approach outperforms a classical direct substructuring technique [33]. Preliminary
results for 3D heterogeneous diffusion problems with 9×106 degrees of freedom also
indicate good scalability of the iterative solver on up to 350 processors.

Another approach that is becoming popular is to add the capability of com-
puting an incomplete factorization using a sparse direct solver. The incomplete
factorization can be used as a preconditioner for solving a sparse linear system
using an iterative method. The resulting package can be considered a hybrid ap-
proach for handling very large problems. An example can be found in PaStiX, a
library for solving sparse linear systems on clusters of SMP nodes using supernodal
algorithms [37, 38].

1.4.3 Row-projection Methods

The Block Cimmino method [5, 12, 27], which is a block row-projection method
for the solution of large sparse general systems of equations, is another hybrid
method. The rows of the system matrix A are first partitioned into blocks. The
block Cimmino method projects the current iterate simultaneously onto the mani-
folds corresponding to the blocks of rows and then takes a convex combination of
the resulting vectors.

Drummond [19, 20] has investigated the choice of row partitionings. In par-



“pp04˙revised˙copy”
2006/6/26
page 10i

i
i

i

i
i

i
i

10 Chapter 1. Parallel Sparse Solvers, Preconditioners, and Their Applications

ticular, he has considered two different preprocessing strategies that are applied to
the matrix AAT . The goal is to find permutations that transform AAT into a ma-
trix with a block tridiagonal structure. Doing this provides a natural partitioning of
the linear system for row projection methods because these methods use the normal
equations to compute their projections. Therefore, the resulting natural block parti-
tioning should improve the rate of convergence of block row projection methods and
as block Cimmino and block Kaczmarz. The first preprocessing strategy produces
a two-block partition, which naturally induces parallelism and improves the conver-
gence of the block Cimmino method. The second strategy works on matrices with
narrower bands, resulting in more blocks that can be processed in parallel. While
the latter strategy exploits parallel computing better and could deliver two-block
partitions, it is also more dependent on the parameters used to narrow the band of
the matrix, the sizes of the resulting blocks, and the interconnection mechanisms
between the processing elements.

1.5 Expert Approaches to Solving Sparse Linear
Systems

From the above discussion, it is clear that many algorithms are currently available
for solving sparse systems of linear equations. They come in different flavors: direct
methods, iterative methods, and hybrids of the two. These methods represent differ-
ent trade-offs with respect to metrics such as robustness, scalability, and execution
time. Their performance can vary dramatically depending on the characteristics of
a given linear system. Attempts are now being made to develop expert approaches
to ease the selection of methods and/or to improve the robustness of the solution
process.

One such example is the Grid-TLSE project [2, 11]. The goal of the project is
to provide one-stop shopping for users of sparse direct methods. To accomplish this
goal, the project will maintain a collection of sparse direct solvers and test matrices,
as well as a database of performance statistics. A user will be able to interrogate
the database for information concerning the sparse direct solvers or matrices that
are available in the collection. The user will also be able to perform comparative
analysis of selected solvers using user-supplied matrices or specific matrices from
the matrix collection available in the GRID-TLSE project.

Another example is the work of Bhowmick et al. [10]. The purpose of this
project is to improve the performance of large-scale simulations. The authors have
developed adaptive linear solvers, which use heuristics to select a solution method to
cope with the changing characteristics of linear systems generated at different stages
of an application. They have also developed composite linear solvers, which apply a
sequence of methods to the same linear system to improve reliability. Preliminary
experiments have demonstrated that both approaches can significantly decrease
execution times in some nonlinear PDE-based simulations from computational fluid
dynamics.



“pp04˙revised˙copy”
2006/6/26
page 11i

i
i

i

i
i

i
i

1.6. Applications 11

1.6 Applications
As we have indicated in Section 1.1, there is an abundance of applications that rely
on sparse linear solvers. In many cases, the matrix can become very large because
of the need to perform high-fidelity modeling and simulations. In this section, we
consider two applications: circuit simulations and structural dynamics.

Circuit simulations give rise to very large sparse linear systems, which can be
highly ill-conditioned and therefore a challenge to solve. Recently, both direct and
iterative methods of solution have been considered. Davis and Stanley [14] have
considered unsymmetrically permuting the matrices to upper triangular form, then
applying a symmetric minimum degree algorithm is to the diagonal blocks, which are
then factorized using a sparse LU factorization with numerical pivoting. Sosonkina
and Saad have employed pARMS [45, 61], a suite of parallel iterative accelerators
and multilevel preconditioners for the solution of general sparse linear systems,
to solve circuit simulation problems. Partitioning techniques and local ordering
strategies play an important role in the solution process. These techniques also
are relevant in the work of Basermann et al. [8]. Incomplete LU factorizations [8]
and approximate inverses [62] have also been used as preconditioners for iterative
methods of solution.

Salinas [9], a massively parallel structural dynamics code developed at San-
dia National Laboratories, is a big user of parallel sparse linear solvers. During
the early development of Salinas, FETI-DP (Dual-Primal Finite Element Tearing
and Interconnecting) [28] was the primary linear solver used. Within each domain,
sparse direct solvers are employed. Iterative linear solvers are used to handle the
interface variables. Recently, Salinas developers have implemented an abstract in-
terface to linear solvers, which has opened the door to two additional iterative linear
solver packages: Prometheus (an algebraic multigrid package) [1], and CLASP (a
multigrid solver developed by Clark Dohrmann at Sandia National Laboratories).

Acknowledgments

The author appreciated the input provided by Leroy Anthony Drummond, Luc
Giraud, Laura Grigori, Dinesh Kaushik, Xiaoye Li, and Padma Raghavan. Without
the input, it would be simply impossible to put the overview together. The author
also would like to express his special thanks to Iain Duff and Jennifer Scott, who
read an early draft and provided much feedback to improve the presentation.

This work was supported by the Director, Office of Science, U.S. Department
of Energy under Contract No. DE-AC03-76SF00098.



“pp04˙revised˙copy”
2006/6/26
page 12i

i
i

i

i
i

i
i

12 Chapter 1. Parallel Sparse Solvers, Preconditioners, and Their Applications



“pp04˙revised˙copy”
2006/6/26
page 13i

i
i

i

i
i

i
i

Bibliography

[1] M. F. Adams, Multigrid Equation Solvers for Large Scale Nonlinear Finite El-
ement Simulations, ph.d. dissertation, University of California, Berkeley, 1998.

[2] P. Amestoy, I. Duff, L. Giraud, J.-Y. L’Excellent, and C. Puglisi,
Grid-tlse: A web site for experimenting with sparse direct solvers on a compu-
tational grid, in Eleventh SIAM Conference on Parallel Processing for Scientific
Computing, San Francisco, CA, 2004.

[3] P. Amestoy, I. Duff, J. Koster, and J.-Y. L’Excellent, A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling, SIAM J.
Matrix Anal. Appl., 23 (2001), pp. 15–41.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide, Third Edition, SIAM, Phildel-
phia, PA, 1999.

[5] M. Arioli, I. Duff, J. Noailles, and D. Ruiz, Block cimmino and block
ssor algorithms for solving linear systems in a parallel environment, Tech. Rep.
TR/89/11, CERFACS, Toulouse, France, 1989.

[6] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon, Progress
in sparse matrix methods for large linear systems on vector supercomputers,
Internat. J. Supercomp. Appl, 1 (1987), pp. 10–30.

[7] A. Baker, J. Dennis, and E. Jessup, An efficient block variant of GMRES.
Submitted, 2003.

[8] A. Basermann, I. Jaekel, M. Nordhausen, and K. Hachiya, Parallel
iterative solvers for sparse linear systems in circuit simulation, Future Gener-
ation Comp. Syst., 21 (2005), pp. 1275–1284.

[9] M. Bhardwaj, K. Pierson, G. Reese, T. Walsh, D. Day, K. Alvin,
J. Peery, C. Farhat, and M. Lesoinne, Salinas: A scalable software for
high-performance structural and solid mechanics simulations, in SC2002, 2002.

13



“pp04˙revised˙copy”
2006/6/26
page 14i

i
i

i

i
i

i
i

14 Bibliography

[10] S. Bhowmick, P. Raghavan, and K. Teranishi, A combinatorial scheme
for developing efficient composite solvers, in Lecture Notes in Computer Sci-
ence, P. Sloot, C. Tan, J. Dongarra, and A. Hoekstra, eds., vol. 2330 of Com-
putational Science-ICCS 2002, Springer Verlag, 2002.

[11] E. Caron, F. Desprez, M. Dayd́, A. Hurault, and M. Pantel, On
deploying scientific software within the grid-tlse project, Lectures in Computing
Letters, 1 (2005).

[12] G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equaziono
lineari, in Ricerca Sci. II, vol. 9, I, 1938, pp. 326–333.

[13] E. Cuthill, Several strategies for reducing bandwidth of matrices, in Sparse
Matrices and their Applications, D. J. Rose and R. A. Willoughby, eds., New
York, 1972, Plenum Press.

[14] T. Davis and K. Stanley, Sparse lu factorization of circuit simulation ma-
trices, in Eleventh SIAM Conference on Parallel Processing for Scientific Com-
puting, San Francisco, CA, 2004.

[15] E. D’Azevedo, P. Forsyth, and W. Tang, Ordering methods for pre-
conditioned conjugate gradients methods applied to unstructured grid problems,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 944–961.

[16] , Towards a cost effective high order ilu preconditioner, BIT, 32 (1992).

[17] F. Dobrian and A. Pothen, OBLIO: Design and performance, in State of
the Art in Scientific Computing, Lecture Notes in Computer Science, 3732,
J. Dongarra, K. Madsen, and J. Wasniewski, eds., Springer Verlag, 2005,
pp. 758–767.

[18] J. J. Dongarra, J. D. Croz, S. Hammarling, and I. Duff, A set of
level 3 Basic Linear Algebra Subprograms, ACM Transactions on Mathematical
Software, 16 (1990), pp. 1–17.

[19] L. Drummond, Block iterative methods for the solution of large sparse lin-
ear systems in heterogenous distributed computing environments, PhD thesis,
CERFACS, 1995.

[20] L. Drummond, I. Duff, and D. Ruiz, Partitioning strategies for the block
cimmino algorithm, in Eleventh SIAM Conference on Parallel Processing for
Scientific Computing, San Francisco, CA, 2004.

[21] I. Duff, Design features of a frontal code for solving sparse unsymmetric linear
systems out-of-core, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 270–280.

[22] I. Duff, A. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices,
Oxford University Press, Oxford, England, 1987.



“pp04˙revised˙copy”
2006/6/26
page 15i

i
i

i

i
i

i
i

Bibliography 15

[23] I. Duff, G. Golub, J. Scott, and F. Kwok, Combining direct and iterative
methods to solve partitioned linear systems, in Eleventh SIAM Conference on
Parallel Processing for Scientific Computing, San Francisco, CA, 2004.

[24] I. Duff, R. Grimes, and J. Lewis, Sparse matrix test problems, ACM Trans.
Math. Softw., 15 (1989), pp. 1–14.

[25] I. Duff and J. Reid, The multifrontal solution of indefinite sparse symmetric
linear equations, ACM Trans. Math. Softw., 9 (1983), pp. 302–325.

[26] I. S. Duff and J. A. Scott, Stabilized bordered block diagonal forms for
parallel sparse solvers, Parallel Computing, 31 (2005), pp. 275–289.

[27] T. Elfving, Block-iterative methods for consistent and inconsistent linear
equations, Numer. Math., 35 (1980), pp. 1–12.

[28] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen,
Feti-dp: a dual-primal unified feti method - part i: A faster alternative to the
two-level feti method, Intern. J. Numer. Methods in Engineering, 50 (2001),
pp. 1523–1544.

[29] J. George, Nested dissection of a regular finite element mesh, SIAM J. Num.
Anal., 10 (1973), pp. 345–363.

[30] J. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

[31] , On the evolution of the minimum degree algorithm. (To appear in SIAM
Review), 1989.

[32] J. George, J. W.-H. Liu, and E. G.-Y. Ng, Communication results for
parallel sparse Cholesky factorization on a hypercube, Parallel Computing, 10
(1989), pp. 287–298.

[33] L. Giraud, A. Marrocco, and J. Rioual, Iterative versus direct parallel
substructuring methods in semiconductor device modelling, Num. Linear Alge-
bra and Appl, 12 (2005), pp. 33–53.

[34] L. Giraud, S. Mulligan, and J. Rioual, Algebraic preconditioners for
the solution of schur complement systems, in Eleventh SIAM Conference on
Parallel Processing for Scientific Computing, San Francisco, CA, 2004.

[35] L. Grigori and X. S. Li, Performance analysis of parallel right-looking sparse
lu factorization on two dimensional grids of processors, in PARA’04 Workshop
on State-of-the-art in Scientific Computing, June 20-23, 2004, Copenhagen,
Denmark, 2004.

[36] A. Guermouche and J.-Y. L’Excellent, Constructing memory-
minimizing schedules for multifrontal methods, ACM Transactions on Math-
ematical Software, (2005). to appear.



“pp04˙revised˙copy”
2006/6/26
page 16i

i
i

i

i
i

i
i

16 Bibliography

[37] P. Hénon, F. Pellegrini, P. Ramet, J. Roman, and Y. Saad, High
performance complete and incomplete factorizations for very large sparse sys-
tems by using Scotch and PaStiX softwares, in Eleventh SIAM Conference on
Parallel Processing for Scientific Computing, San Francisco, CA, 2004.

[38] P. Hénon, P. Ramet, and J. Roman, PaStiX: A High-Performance Parallel
Direct Solver for Sparse Symmetric Definite Systems, Parallel Computing, 28
(2002), pp. 301–321.

[39] E.-J. Im and K. Yelick, Optimizing sparse matrix computations for register
reuse in SPARSITY, Lecture Notes in Computer Science, 2073 (2001), pp. 127–
136.

[40] B. Irons, A frontal solution program for finite element analysis, Int. J. Num.
Meth. Engng., 2 (1970), pp. 5–32.

[41] D. Kaushik and W. Gropp, Optimizing sparse matrix-vector operations on
scalar and vector processors, in Eleventh SIAM Conference on Parallel Pro-
cessing for Scientific Computing, San Francisco, CA, San Francisco, CA, 2004.

[42] I. Lee, P. Raghavan, and E. G. Ng, Effective preconditioning through or-
dering interleaved with incomplete factorization, SIAM J. Matrix Anal. Appl.,
(2006).

[43] X. S. Li and J. W. Demmel, SuperLU DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems, ACM TOMS, 29 (2003),
pp. 110–140.

[44] X. S. Li and Y. Wang, Performance evaluation and enhancement of Su-
perLU DIST 2.0, Tech. Rep. LBNL-53624, Lawrence Berkeley National Labo-
ratory, 2003.

[45] Z. Li, Y. Saad, and M. Sosonkina, parms: A parallel version of the alge-
braic recursive multilevel solver, Numerical Linear Algebra with Applications,
10 (2003), pp. 485–509.

[46] R. Lipton, D. Rose, and R. Tarjan, Generalized nested dissection, SIAM
J. Num. Anal., 16 (1979), pp. 346–358.

[47] J. Liu, E. Ng, and B. Peyton, On finding supernodes for sparse matrix
computations, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 242–252.

[48] J. W.-H. Liu, An adaptive general sparse out-of-core Cholesky factorization
scheme, SIAM J. Sci. Stat. Comput., 7 (1987), pp. 585–599.

[49] , The role of elimination trees in sparse factorization, Tech. Rep. CS-87-
12, Dept. of Computer Science, York University, 1987. (to appear in SIAM J.
Matrix Anal.).



“pp04˙revised˙copy”
2006/6/26
page 17i

i
i

i

i
i

i
i

Bibliography 17

[50] K. Malkowski and P. Raghavan, Multi-pass mapping schemes for parallel
sparse matrix computations, in Proceedings of ICCS 2005: 5th International
Conference on Computational Science, Lecture Notes in Computer Science,
Number 3514, V. Sunderam, G. van Albada, P. Sloot, and J. Dongarra, eds.,
Springer Verlag, 2005, pp. 245–255.

[51] H. Markowitz, The elimination form of the inverse and its application to
linear programming, Management Sci., 3 (1957), pp. 255–269.

[52] J. Meijerink and H. vander Vorst, An iterative solution method for lin-
ear systems of which the coefficient matrix is a symmetric M-matrix, Math.
Comput., 31 (1977), pp. 148–162.

[53] N. Munksgaard, Solving sparse symmetric sets of linear equations by precon-
ditioned conjugate gradients, ACM Trans. Math. Softw., 6 (1980), pp. 206–219.

[54] E. G. Ng and P. Raghavan, Towards a scalable hybrid sparse solver, Con-
currency: Practice and Experience, 12 (2000), pp. 53–68.

[55] A. Pothen and C. Sun, A mapping algorithm for parallel sparse cholesky
factorization, SIAM J. Sci. Comput., 14 (1993), pp. 1253–1257.

[56] P. Raghavan, Parallel Sparse Matrix Factorization: QR and Cholesky De-
compositions, PhD thesis, The Pennsylvania State University, 1991.

[57] P. Raghavan, K. Teranishi, and E. G. Ng, A latency tolerant hybrid
sparse solver using incomplete cholesky factorization, Numerical Linear Algebra
and Applications, 10 (2003), pp. 541–560.

[58] D. Rose, A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations, in Graph Theory and Computing, R. C.
Read, ed., Academic Press, 1972, pp. 183–217.

[59] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM,
Philadephia, PA, 2003.

[60] Y. Saad and P. Henon, PHIDAL: A parallel multilevel linear solver based
on a hierarchical interface decomposition, in Eleventh SIAM Conference on
parallel Processing for Scientific Computing, San Francisco, CA, 2004.

[61] Y. Saad and M. Sosonkina, parms: a package for solving general sparse
linear systems of equations, in Parallel Processing and Applied Mathematics,
R. Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Wasniewski, eds., vol. 2328
of Lecture Notes in Computer Science, Berlin, 2002, Springer-Verlag, pp. 446–
457.

[62] O. Schenk, Recent advances in sparse linear solver technology for semicon-
ductor device simulation matrices, in Eleventh SIAM Conference on Parallel
Processing for Scientific Computing, San Francisco, CA, 2004.



“pp04˙revised˙copy”
2006/6/26
page 18i

i
i

i

i
i

i
i

18 Bibliography

[63] R. Schreiber, A new implementation of sparse Gaussian elimination, ACM
Trans. Math. Softw., 8 (1982), pp. 256–276.

[64] B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition: Paral-
lel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge
University Press, 1996.

[65] W. Tinney and J. Walker, Direct solution of sparse network equations by
optimally ordered triangular factorization, Proc. IEEE, 55 (1967), pp. 1801–
1809.

[66] S. Toledo, Improving the memory-system performance of sparse-matrix vec-
tor multiplication, IBM Journal of Research and Development, 41 (1997),
pp. 711–725.

[67] H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems,
Cambridge University Press, 2003.

[68] R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, and B. Lee,
Performance optimizations and bounds for sparse matrix-vector multiply, in
Proceedings of Supercomputing, Baltimore, MD, USA, November 2002, 2002.


